Necessary Optimality and Duality for Multiobjective Semi-infinite Programming
نویسنده
چکیده
The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programming problem and establish the corresponding duality theorems.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملA General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملOptimality conditions and duality for multiobjective semi-infinite programming problems with generalized (C, α, ρ, d)-convexity
This paper deals with a nonlinear multiobjective semi-infinite programming problem involving generalized (C,α, ρ, d)-convex functions. We obtain sufficient optimality conditions and formulate the Mond-Weirtype dual model for the nonlinear multiobjective semi-infinite programming problem. We also establish weak, strong and strict converse duality theorems relating the problem and the dual problem.
متن کاملOptimality and Duality for Non-smooth Multiple Objective Semi-infinite Programming
The purpose of this paper is to consider a class of non-smooth multiobjective semi-infinite programming problem. Based on the concepts of local cone approximation, K − directional derivative and K − subdifferential, a new generalization of convexity, namely generalized uniform ( , , , ) K F d α ρ − − convexity, is defined for this problem. For such semi-infinite programming problem, several suf...
متن کاملMultiobjective DC Programming with Infinite Convex Constraints
In this paper new results are established in multiobjective DC programming with infinite convex constraints (MOPIC for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision variables ru...
متن کامل